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Summary. A randomized self-stabilizing algorithm A
is an algorithm that, whatever the initial configuration
is, reaches a set L of legal configurations in finite time
with probability 1. The proof of convergence towards L
is generally done by exhibiting a potential function ϕ,
which measures the “vertical” distance of any configura-
tion to L, such that ϕ decreases with non-null probability
at each step of A. We propose here a method, based on
the notion of coupling, which makes use of a “horizontal”
distance δ between any pair of configurations, such that
δ decreases in expectation at each step of A. In contrast
with classical methods, our coupling method does not
require the knowledge of L. In addition to the proof of
convergence, the method allows us to assess the conver-
gence rate according to two different measures. Proofs
produced by the method are often simpler or give better
upper bounds than their classical counterparts, as ex-
amplified here on Herman’s mutual exclusion and Iter-
ated Prisoner’s Dilemma algorithms in the case of cyclic
graphs.

1 Introduction

The notion of self-stabilization was introduced in com-
puter science by Dijkstra [4]. A distributed algorithm
A is self-stabilizing if, whatever the initial configura-
tion it starts from, it reaches within a finite time a set
L of “legal” configurations, i.e, configurations satisfy-
ing a desired property. Moreover, L is closed under A:
once A has reached L, it never leaves it. Self-stabilizing
systems have notably received much attention because
they propose an elegant way of solving the problem of
fault-tolerance [19]. Randomization is often employed in
self-stabilization to break the symmetry in anonymous
systems (see [5]). With randomized self-stabilizing algo-
rithms, the convergence towards L is guaranteed with
probability 1.

We show here that we can use the notion of coupling,
as used in the field of Applied Probability, to prove the
self-stabilization property and at the same time, the rate

of convergence to the set of legal configurations. Cou-
pling is a method used for analyzing the rate of con-
vergence to equilibrium in Markov chain Monte Carlo
experiments (see, e.g., [26]). The coupling time is the
time that two faithful copies of a stochastic process co-
alesce together. Coupling time is generally used as an
upper bound of the “mixing time” of a Markov chain A,
i.e., the time for the chain to be ε-close to its station-
ary distribution. We show here that self-stabilization of
A follows from the finiteness of coupling time. The cou-
pling time will be also used for deriving an upper bound
on two measures of the rate of convergence of A: the ex-
pected time of reaching L (“hitting time”) and the time
after which L has been reached with high probability
(“ε-absorption time”).

Comparison with related work.

Classically, self-stabilization of a randomized algo-
rithm A, seen as a Markov chain (Xt)

∞
t=0, is shown by

finding an integer-valued potential function ϕ on the set
Ω of configurations that decreases with non-null prob-
ability until ϕ reaches a minimum value, say 0. In this
case, assuming ϕ(Xt) = 0 ⇒ Xt ∈ L, one is guaranteed
that L has been reached. The expected time of hitting is
calculated independently (see, e.g., [5,14]). There is an-
other classical method for both showing self-stabilization
w.r.t. L and analyzing the rate of convergence, as exam-
plified in [9], which consists in finding an integer-valued
potential function ϕ on Ω such that:

ϕ(Xt) = 0 ⇒ Xt ∈ L, and

E[ϕ(Xt+1)] ≤ βϕ(Xt) for some β (0 ≤ β < 1).
This function ϕ can be seen as a “vertical” distance that
separates X from L (See Figure 1).

Our new method basically consists in finding a cou-
pling (Xt, Yt)

∞
t=1 (given arbitrary initial configurations

X0 = x and Y0 = y) where (Xt) and (Yt) are faithful
copies of A, and a “horizontal” distance δ on Ω × Ω
such that:
E[δ(Xt+1, Yt+1)] ≤ βδ(Xt, Yt) for some β (0 ≤ β < 1).
For appropriate initial values y of Yt, one can guarantee
that, whatever the initial value x of Xt is, Xt has reached
L when δ is null. Suppose indeed that y belongs to L.
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Fig. 1. Illustration of the classical method

Then Yt ∈ L for all t (since L is closed), and Xt ∈ L
when δ(Xt, Yt) = 0 (since then Xt = Yt). See Figure 2.
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Fig. 2. Illustration of the coupling method

As explained below, the advantages of the coupling
method are the following:

• it provides us not only with a proof of self-stabilization,
but also with an upper bound for the hitting time and
the ε-absorption time,

• it does not rely on the knowledge of L,
• the discovery of δ and the evaluation of β can be

greatly simplified by using various optimizations of
coupling, such as path coupling (see [3]),

• on Herman’s mutual exclusion and Iterated Prisoner’s
Dilemma algorithms, proofs produced by our method

are simpler or give better upper bounds than their
classical counterparts.

The method is however limited, because we have to
assume that the scheduling of the randomized actions
is fixed (e.g., synchronous), and the set of legal config-
urations L strongly connected. We will indicate how to
relax the latter assumption on L at the end of the paper.

Plan of the paper. After some preliminaries on ran-
domized distributed algorithms (Section 2), we define
the concepts of self-stabilization and rate of convergence
(Section 3). We then relate the notion of coupling to
that of self-stabilization (Section 4), thus yielding a new
method for proving self-stabilization (Section 5). The
method is refined via the technique of path coupling in
Section 6. We indicate how to relax a basic assumption
on the legal configurations in Section 7, and conclude in
Section 8.

2 Randomized Distributed Algorithms As
Markov Chains

In a distributed system, the topology of the network of
machines is generally given under the form of a graph
G = (V, E), where the set V = {1, · · · , N} of vertices
corresponds to the locations of the machines. There is an
edge between two vertices when the corresponding ma-
chines can communicate together. All the machines are
here identical finite state machines. The space of states
is Q. A configuration x of the network is the N -tuple
of all the states of the machines. The set of configura-
tions QN is denoted Ω. Given a configuration x of Ω,
the state of the i-th machine is written x(i). The com-
munication between machines is done here through the
reading of neighbors’ states. Randomized distributed al-
gorithms are characterized by a scheduler (or adversary),
i.e., a mechanism which selects, at each step, a nonempty
subset of machines, and a set of actions which applies si-
multaneously at each selected machine. In this paper,
we suppose that the scheduler is fixed and memoryless
(called “oblivious” in [25]): at each step, it selects a sub-
set of machines depending on the current configuration
only. For example, we will consider the case of a syn-
chronous scheduler (resp. randomized central scheduler)
which selects, at each step, all the machines (resp. a sin-
gle machine randomly chosen). Once a machine is se-
lected, its state (as well as possibly, the state of some
of its neighbors) is changed by the action that applies.
For a given memoryless scheduler, the randomized dis-
tributed algorithm can be seen as a Markov chain A of
the form (Xt)

∞
t=0 where Xt is a random variable taking

its values on Ω (see, e.g., [8]): given configurations x and
y, the probability at step t to go from x to y is a con-
stant, Pr(Xt+1 = y|Xt = x) that depends on x and y
only, not on t.

Example 1. We consider Herman’s mutual exclusion al-
gorithm [14]. The topology is a cyclic graph (ring) of N
vertices, and the scheduler synchronous. The set of states
is Q = {0, 1}, and the number of machines N is odd. At



each step, the state of every machine x(i) (1 ≤ i ≤ N)
is changed into x′(i) as follows:

• if x(i) 6= x(i − 1) then x′(i) = ¬x(i),

• if x(i) = x(i−1) then x′(i) =

{

0 with probability 1/2,
1 with probability 1/2.

(When i = 1, (i − 1) stands for N . As usual, ¬0 stands
for 1, and ¬1 for 0.)

Example 2. We consider the problem of the Iterated Pris-
oner’s Dilemma, as modeled in [9]. The topology is a
cyclic graph (ring) of N vertices, and the scheduler ran-
domized central. The set of states is Q = {−, +}. At
each step, a vertex i (1 ≤ i ≤ N) is chosen uniformly
at random, and the values x(i) and x(i + 1) are changed
into x′(i) and x′(i + 1) respectively as follows:

• if x(i) = x(i + 1), then x′(i) = x′(i + 1) = +,
• if x(i) 6= x(i + 1), then x′(i) = x′(i + 1) = −.

(When i = N , (i + 1) stands here for 1.)

3 Self-Stabilization

Let us consider a Markov chain A = (Xt)
∞
t=0 on a fi-

nite set Ω. Two configurations x and y are in the same
equivalence class if they are “inter-connected”, i.e., if
there exist t, u such that Pr(Xt = y|X0 = x) > 0 and
Pr(Xu = x|X0 = y) > 0. Given two classes C and C ′,
C ′ � C means that Pr(Xt = y|X0 = x) > 0 for some
x ∈ C, y ∈ C ′ and t > 0. The minimal classes for � are
called ergodic sets. More precisely:

Definition 1. Let M ⊂ 2Ω be a set of configurations.
M is an ergodic set if

1. M is strongly connected, i.e.:
∀x, y ∈ M : Pr(Xt = y|X0 = x) > 0 for some t, and

2. M is closed, i.e.:
(x ∈ M ∧ Pr(X1 = y|X0 = x) > 0) ⇒ y ∈ M.

Every finite Markov chain has always at least one er-
godic set (since finite partial ordering � must have at
least one minimal element). Moreover, two distinct er-
godic sets are disjoint (since they are both strongly con-
nected).

In the non-probabilistic context, we say that, given
a set L of legal configurations, A is self-stabilizing w.r.t.
L if, starting from any initial configuration, the system
is guaranteed to reach a configuration of L within a fi-
nite number of transitions (see, e.g., [24]). For example,
in mutual exclusion problems, a legal configuration is a
configuration with a single token, which expresses the
fact that only one machine can enjoy the resource. In
the probabilistic context of Markov chains, the conver-
gence property has to be guaranteed with probability 1.
Formally:

Definition 2. Given a closed set L of configurations, A
is self-stabilizing w.r.t. L, if A converges towards L (with
probability 1), whatever the initial configuration is, i.e:

∀x ∈ Ω Pr(Xt ∈ L|X0 = x) → 1 when t → ∞..

Note that by Markov’s theorem (see, e.g., [17]) A is self-
stabilizing iff

∀x ∃t Pr(Xt ∈ L|X0 = x) > 0. (♦).
Given a Markov chain A = (Xt)

∞
t=0 and a closed set L of

configurations, we are interested in methods for proving
the self-stabilization property of A w.r.t. L. We are also
interested in evaluating the rate of convergence of A to
L. We will use two different measures of convergence: the
“expected hitting time” and the “ε-absorption time”.

The expected hitting time is the standard rate of con-
vergence used in the self-stabilization community (see,
e.g., [5], p. 118). It is the expected time for A to reach
L, starting from the “worst” configuration, i.e.:

Definition 3. Given a Markov chain A and a set L of
configurations, the expected hitting time of L (or more
simply the hitting time) is:

HL = maxx∈Ω E[HxL],
where E[.] denotes expectation and

HxL = min{t : Xt ∈ L | X0 = x}.

We will also use a different rate of convergence, called
here “ε-absorption time”, that gives the time after which
L has been reached with high probability.

Definition 4. Given a Markov chain A and a closed
set L, the time of ε-absorption by L (or simply the ε-
absorption time) is:

ΘL(ε) = maxx∈Ω ΘxL(ε),
where ΘxL(ε) = min{t : Pr(Xt ∈ L) ≥ 1−ε | X0 = x}.

So ΘL(ε) is the minimal number of steps in which A
reaches L with probability at least 1− ε. This notion is,
for example, used in [9], for measuring the rate of conver-
gence of the Iterated Prisoner’s Dilemma. The notion is
closed to the notion of “mixing time”, that measures the
number of steps after which the chain is ε-close of the
“stationary distribution” of A. 1 An upper bound on the
mixing time is often computed by finding the “coupling
time” (see, e.g., [23,26]), that is defined in Section 4.

Remark. Various notions of convergence rates are com-
pared together in [1] and [20], but these studies concern
only the case of “irreducible” chains where L and Ω coin-
cide (all the configurations are legal and inter-connected)
while, here, we are concerned with “reducible” chains
where L is a strict subset of Ω.

Let us recall that a finite Markov chain always converges
towards the set of “recurrent” configurations, that is the
union of the ergodic sets (see, e.g., [17]). We have:

Proposition 1. A Markov chain A on a finite set Ω is
self-stabilizing w.r.t. the union of ergodic sets. Moreover:
If A is self-stabilizing w.r.t. a subset L of Ω and L is
ergodic, then L is the unique ergodic set.

We mainly focus in this paper on Markov chains with
a unique ergodic set. They correspond to the notion of
“self-stabilizing” algorithms, as originally defined by Di-
jkstra in the deterministic framework [4], where all the

1 Actually, the two notions coincide when the set L is re-
duced to a single configuration, as in the example of Iterated
Prisoner’s Dilemma.



legal configurations are inter-connected. It is generally
easy to check that a given set L of configurations is er-
godic for A, as illustrated in Examples 3 and 4. What is
difficult is to show the uniqueness of the ergodic set, i.e.,
the absence of any other ergodic set, besides L: for ex-
ample, for a mutual exclusion algorithm, the absence of
any subset of “looping” configurations with two tokens.

Example 3. Consider Herman’s algorithm in the case where
N is odd. In a configuration, a “token” at position i
(1 ≤ i ≤ N) corresponds to the presence of two contigu-
ous states of the same value (00 or 11) at position i − 1
and i. Since N is odd, any configuration contains always
at least one token. It is easy to see that such a set is
ergodic:
The set L is the set of the configurations with a single
token. There are 2N such configurations: they are of the
form xi = 01 · · · 010010 · · · 101 where token 00 is at po-
sition i, or x′

i = 10 · · · 101101 · · · 010 where token 11 is
at position i, for all 1 ≤ i ≤ N . (Letters in bold in-
dicate that they are subjet to randomized transitions.)
Let us show that L is ergodic, i.e. closed and strongly
connected.

Applying a transition to an arbitrary element of L,
say xi, leads to the ‘dual’ element x′

i = 10 · · · 101101 · · · 010
with probability 1/2, where token 11 is at the same po-
sition, or to xi+1 = 10 · · · 101001 · · · 010 with probability
1/2, where token 00 is at position one more right. This
shows that L is closed (since x′

i and xi+1 belong to L).
Moreover, this shows that one can go from xi to x′

i and
xi+1 in one step; two elements of L are thus connected
together within at most N steps. Hence L is strongly
connected.

Example 4. In the Iterated Prisoner’s Dilemma, the set
L of legal configurations is the singleton made of the con-
figuration x∗ = (+)N . Obviously, any action transforms
x∗ to itself. Hence, {x∗} is trivially an ergodic set.

In the following, we assume that we are given a Markov
chain A and an ergodic set L, and we focus on the prob-
lem of proving the self-stabilization property of A w.r.t.
L. (The assumption of ergodicity for L will be relaxed
in Section 7.) The following property will be useful.

Proposition 2. Given a closed set L, if HL is finite,
then A is self-stabilizing w.r.t. L.

Proof. By contraposition. Suppose that A is not self-
stabilizing. Then, from (♦), we know that there exists
x ∈ Ω such that

Pr(Xt ∈ L|X0 = x) = 0 for all t ≥ 0.

So HxL takes always an infinite value. Therefore E[HxL]
is infinite, and so is HL. �

In case L is not only closed, but ergodic, we have, using
Prop. 1:

Proposition 3. Given an ergodic set L, if HL is finite,
then A is self-stabilizing w.r.t. L, and L is the unique
ergodic set.

4 Coupling

The method of “coupling” is an elementary probabilistic
method for measuring the “agreement” time between the
components of a stochastic process (see, e.g., [26,23]).

Definition 5. A coupling for A is a Markov chain on
Ω × Ω defining a stochastic process (Xt, Yt)

∞
t=1 with the

properties
1. Each of the processes (Xt) and (Yt) is a faithful

copy of A (given initial configurations X0 = x and Y0 =
y).

2. If Xt = Yt, then Xt+1 = Yt+1.

Condition 1 ensures that each process, viewed in isola-
tion, is just simulating A – yet the coupling may update
Xt and Yt simultaneously so that they will tend to move
closer together, according to some notion of distance.
Once the pair of configurations agree, condition 2 guar-
antees they agree from that time forward.

Definition 6. Given a coupling (Xt, Yt), the (expected)
coupling time is:

T = maxx∈Ω,y∈Ω E[Tx,y],
where Tx,y = min{t : Xt = Yt | X0 = x, Y0 = y}.

The coupling time is often computed as un upper
bound on the mixing time, in order to show the property
of “rapid mixing” for A (i.e, the fact that the mixing
time is bounded above by a polynomial in N and ln( 1

ε )).
We show hereafter that the coupling time gives also an
upper bound on the hitting time.

Theorem 1. Given a Markov chain A and an ergodic
set L, if there exists a coupling of finite expected time T,
then:

1. The hitting time HL satisfies: HL ≤ T.
2. L is the unique ergodic set, and A is self-stabilizing

w.r.t. L.

Proof. Let us suppose that there exists a coupling of
finite expected T, and let us show statements 1 and 2.

1. Recall that: HxL = min{t : Xt ∈ L | X0 = x},
and Txy = min{t : Xt = Yt | X0 = x, Y 0 = y}.
Suppose now that y ∈ L. Then Yt ∈ L since L is
closed. Hence: HxL ≤ Txy for all x ∈ Ω, y ∈ L. And
by taking the expectations, then the maxima of the
two sides: HL ≤ T.

2. Uniqueness of L and self-stabilization of A follow
from the finiteness of HL (statement 1) by Propo-
sition 3.

�

5 Two Sufficient Criteria of Self-Stabilization

By Theorem 1, finding an upper bound on the time of
coupling T allows us at once to prove the self-stabilization
and to obtain an upper bound on the hitting time. Fol-
lowing classical results on mixing time (see e.g. [10]), we
give hereafter two sufficient conditions for bounding the
coupling time. In each case, this provides us additionally
with an upper bound not only for the hitting time, but
also for the ε-absorption time.



Theorem 2. Given a Markov chain A and an ergodic
set L, suppose there exist a coupling (Xt, Yt) and a func-
tion δ on Ω×Ω which takes values in {0, 1, · · · , B} such
that:

• δ(Xt, Yt) = 0 iff Xt = Yt, and
• there exists β < 1 such that, for all (Xt, Yt):

E[δ(Xt+1, Yt+1)] ≤ βδ(Xt, Yt). (1)

Then L is the unique ergodic set and A is self-stabilizing
w.r.t. L. Furthermore:

1. The hitting time satisfies: HL ≤ B
1−β .

2. The ε-absorption time satisfies: ΘL(ε) ≤ ln(B/ε)
1−β .

The proof of Theorem 2 relies on the following proposi-
tion:

Proposition 4. Suppose that D = (Dt)
∞
t=0 is a nonneg-

ative stochastic process on {0, 1, · · · , B} such that
E[Dt+1] ≤ βDt (with 0 < β < 1). Then if τ is the first
time that Dt = 0, we have: E[τ ] ≤ B/(1 − β).

Proof. The process Z(t) = (B−Dt)−(1−β)min(t, τ ) is a
submartingale since E[Z(t+1)]−Z(t) = Dt−E[Dt+1]−
(1 − β) ≥ (1 − β)(Dt − 1) ≥ 0. Moreover, τ is a stop-
ping time for Z, and the differences Z(t + 1) − Z(t)
are bounded. The Optional Stopping theorem for sub-
martingales (see e.g., [27]) then applies, which yields:
E[Zτ ] ≥ Z0, i.e: B−(1−β)E[τ ] ≥ 0. Hence: E[τ ] ≤ B

1−β .

�

Proof of Theorem 2. Let us consider an integer-valued
function δ satisfying the assumptions of Theorem 2, and
let us show statements 1 and 2. (The facts that L is the
unique ergodic set, and A is self-stabilizing follow from
statement 1, by Proposition 3.)

1. Consider two elements x, y ∈ Ω, and the coupling
(Xt, Yt) starting from (X0, Y0) = (x, y). Let Dt be
the process defined by Dt = δ(Xt, Yt) for t ≥ 0.
Since δ(Xt, Yt) = 0 iff Xt = Yt, the quantity Tx,y

is the time required for Dt to reach 0. Consider the
coupling (Xt, Yt) which starts from (X0, Y0) = (x, y).
Therefore by Proposition 4, we have, for all x, y ∈ Ω,
E[Tx,y] ≤ B/(1−β). Now, from Theorem 1, we infer:
HL ≤ maxx,y E[Tx,y] ≤ B/(1 − β).

2. Since E[δ(Xt+1, Yt+1)] ≤ βδ(Xt, Yt), we have
E[δ(Xt, Yt)] ≤ βtδ(X0, Y0) ≤ βtB. But, by Markov’s
inequality (Pr(X ≥ a) ≤ E[X]/a):

Pr(δ(Xt, Yt) ≥ 1) ≤ E[δ(Xt, Yt)].
Hence, for all X0, Y0 ∈ Ω and all t > 0:

Pr(Xt 6= Yt) = Pr(δ(Xt, Yt) > 0)
= Pr(δ(Xt, Yt) ≥ 1) ≤ E[δ(Xt, Yt)] ≤ βtB.

Therefore, for all X0, Y0 ∈ Ω and all t > 0:
Pr(Xt = Yt) ≥ 1 − βtB.

Suppose that Y0 ∈ L. Then Yt ∈ L (because L closed),
and Xt = Yt implies Xt ∈ L. So, for all X0 ∈ Ω
and all t > 0: Pr(Xt ∈ L) ≥ 1 − βtB. It follows
that Pr(Xt ∈ L) ≥ 1 − ε, as soon as βtB ≤ ε, i.e.,

t ≥ ln(B/ε)
ln(1/β) . Hence Pr(Xt ∈ L) ≥ 1 − ε, as soon as

t ≥ ln(B/ε)
1−β (because 1 − β ≤ ln( 1

β )). �

A similar theorem exists even when β = 1, i.e.:
E[δ(Xt+1, Yt+1)] ≤ δ(Xt, Yt), provided that the proba-
bility of δ(Xt+1, Yt+1) 6= δ(Xt, Yt) can be bounded be-
low.

Theorem 3. Given a Markov chain A and an ergodic
set L, suppose there exist a coupling (Xt, Yt) and a func-
tion δ on Ω×Ω which takes values in {0, 1, · · · , B} such
that:

• δ(Xt, Yt) = 0 iff Xt = Yt, and
• there exists α > 0 such that, for all (Xt, Yt) with

Xt 6= Yt:
E[δ(Xt+1, Yt+1)] ≤ δ(Xt, Yt)

∧ Pr(δ(Xt+1, Yt+1) 6= δ(Xt, Yt)) ≥ α. (2)

Then L is the unique ergodic set and A is self-stabilizing
w.r.t. L. Furthermore:

1. The hitting time satisfies: HL ≤ B2/α.
2. The ε-absorption time satisfies:

ΘL(ε) ≤ deB2

α edln( 1
ε )e.

The proof of Theorem 3 is analogous to that of The-
orem 2, but relies on the following proposition (whose
proof follows that given in [10]; cf [21]):

Proposition 5. Suppose that D = (Dt)
∞
t=0 is a nonneg-

ative stochastic process on {0, 1, · · · , B} such that
E[Dt+1] ≤ Dt. Furthermore suppose that Pr(Dt+1 6=
Dt) ≥ α (with α > 0) when Dt > 0. Then if τ is the
first time that Dt = 0, we have: E[τ ] ≤ B2/α.

Proof. The process Z(t) = (B−Dt)
2−αt is a submartin-

gale since E[(Dt+1 − Dt)
2] ≥ α. (We have: E[(Dt+1 −

Dt)
2] ≥ Pr((Dt+1 − Dt)

2 ≥ 1) = Pr(Dt+1 6= Dt) ≥ α.)
Moreover, τ is a stopping time for Z, and the differ-
ences Z(t + 1) − Z(t) are bounded. The Optional Stop-
ping theorem for submartingales then applies: E[Zτ ] =
B2 − αE[τ ] ≥ Z0 = (B − D0)

2. Hence:

E[τ ] ≤ 1
α (B2 − (B − D0)

2) ≤ B2

α . �

Proof of Theorem 3. Let us consider an integer-valued
function δ satisfying the assumptions of Theorem 3, and
let us show statements 1 and 2. (The facts that L is the
unique ergodic set, and A is self-stabilizing follow from
statement 1, by Proposition 3.)

1. Consider two elements x, y of Ω and a coupling (Xt, Yt)
of initial element (X0, Y0) = (x, y). Let Dt = δ(Xt, Yt)
for t ≥ 0. Since δ(Xt, Yt) = 0 iff Xt = Yt, the quantity
Tx,y is the time required for Dt to reach 0. There-
fore by Proposition 5, we have, for all x, y ∈ Ω,
E[Tx,y] ≤ B2/α. Now, from Theorem 1, we infer:
HL ≤ maxx,y E[Tx,y] ≤ B2/α.

2. Let Dt = δ(Xt, Yt). It is easy to check that Dt satis-
fies the conditions of Prop. 5. Recall that Tx,y is the
first time that Xt = Yt, hence Dt = 0, when X0 = x
and Y0 = y. It follows by Prop. 5:
E[Tx,y] ≤ B2/α. Let T = deB2/αe, then by Markov’s
inequality, we have the probability that Tx,y > T is
at most e−1. If we run s independent trials of length
T then the probability that Xt and Yt are not coupled
by the end of the sT is at most e−s. Therefore, for
t > T dln(ε−1)e, the probability of Xt = Yt is at least



1 − ε. Suppose that Y0 ∈ L. Then Yt ∈ L (because
L closed), and Xt = Yt implies Xt ∈ L. So, for all
X0 ∈ Ω and all t > T dln(ε−1)e: Pr(Xt ∈ L) ≥ 1− ε.

�

Therefore finding a coupling (Xt, Yt) and a function δ
such that (1) (resp. (2)) holds allows us to prove that A
is self-stabilizing, and gives us an upper bound on two
different rates of convergence.

6 Refinement of Coupling

6.1 Path Coupling

As pointed out in [23], it is often cumbersome to measure
the expected change in distance between two arbitrary
configurations. The method of path coupling, introduced
by Bubley and Dyer [3], simplifies the approach by show-
ing that only pairs of configurations that are “close”
need to be considered. Path coupling involves defining
a coupling (Xt, Yt) by considering a path, or sequence
Xt = Z0, Z1, · · · , Zr = Yt between Xt and Yt where the
Zi satisfy certain conditions. The following version of the
path coupling method is convenient:

Lemma 1. (Dyer and Greenhill [10]) Let δ be a met-
ric2 defined on Ω × Ω which takes value in {0, · · · , B}.
Let U be a subset of Ω × Ω s.t.:

For all (Xt, Yt) ∈ Ω × Ω, there exists a path
Xt = Z0, Z1, · · · , Zr = Yt between Xt and Yt such that
(Zi, Zi+1) ∈ U for 0 ≤ i < r and

∑r−1
i=0 δ(Zi, Zi+1) =

δ(Xt, Yt). (3)
Suppose there exist a coupling (X, Y ) 7→ (X ′, Y ′) for the
Markov chain A on all pairs (X, Y ) ∈ U , and a constant
β ≤ 1 such that, for all (X, Y ) ∈ U :

E[δ(X ′, Y ′)] ≤ βδ(X, Y ). (4)
Then this coupling can be extended to a coupling for A
on Ω × Ω, which satisfies (4) for all (X, Y ) ∈ Ω × Ω.

Two configurations X and Y are said to be adjacent
if (X, Y ) ∈ U . The advantage of this lemma is that it
allows us to check the crucial property (4) on the set U of
adjacent pairs only, rather than on the entire space Ω ×
Ω. Lemma 1 combined with Theorem 2 (resp. Theorem
3) allows us to enhance our coupling method for proving
self-stabilization.

6.2 Application to Herman

Let us come back to Herman’s algorithm (see Exam-
ple 1).

Theorem 4. For Herman’s algorithm and N odd, there
exist a subset U of Ω × Ω, a metric δ on Ω × Ω taking
value in {0, · · · , N} and satisfying condition (3), and a
coupling such that:

• ∀(Xt, Yt) ∈ U E[δ(Xt+1, Yt+1)] ≤ δ(Xt, Yt), and

2 I.e., a function such that: δ(X, Y ) = 0 iff X = Y , and
δ(X, Z) ≤ δ(X, Y ) + δ(Y,Z), for all X, Y,Z ∈ Ω.

• ∀(Xt, Yt) ∈ Ω × Ω (with Xt 6= Yt) :
Pr(δ(Xt+1, Yt+1) 6= δ(Xt, Yt)) ≥ 1/2.

Proof.

• Subset U and metric δ. We define δ as the Ham-
ming distance: δ(Xt, Yt) is the number of positions
at which Xt and Yt differ. The pair (Xt, Yt) belongs
to U iff δ(Xt, Yt) = 1. It is immediate to check con-
dition (3) of Lemma 1.

• Coupling. The coupling is defined in order to force
Xt and Yt to do the same probabilistic choice, when
they both have to perform a random action. In other
words, for all i (1 ≤ i ≤ N):
If Xt(i) = Xt(i − 1) and Yt(i) = Yt(i − 1) then

Xt+1(i) = Yt+1(i) =

{

0 with probability 1/2,
1 with probability 1/2.

• Proof of E[δ(Xt+1, Yt+1)] = δ(Xt, Yt) on U . Consider
a pair (Xt, Yt) ∈ U , and let ` be the position of dis-
agreement between Xt and Yt. In order to fix the
ideas consider the following vector

(

Xt

Yt

)

=

(

ν1 ν2 · · · ν`−2 0 0 0 ν`+2 · · · νN

ν1 ν2 · · · ν`−2 0 1 0 ν`+2 · · · νN

)

where all the νi are in {0, 1}, the figures in bold font
correspond to positions `. (The other cases are simi-
lar.) After one step, the state of all the machines at
position 1, · · · , N are updated. We have:

(

Xt+1

Yt+1

)

=

(

ν′
1 ν′

2 · · · ν′
`−2 ν′

`−1 ? ? ν′
`+2 · · · ν′

N

ν′
1 ν′

2 · · · ν′
`−2 ν′

`−1 0 1 ν′
`+2 · · · ν′

N

)

where ‘?’ means “0 with prob. 1/2 and 1 with prob.
1/2”. Note that, for 1 ≤ i ≤ `− 1 and ` + 2 ≤ i ≤ N ,
Xt+1(i) = Yt+1(i) = ν′

i thanks to our coupling. So
Xt+1 and Yt+1 coincide everywhere except, perhaps,
at positions ` or ` + 1. We have:

δ(Xt+1, Yt+1) =







0 with probability 1/4,
1 with probability 1/2,
2 with probability 1/4.

Hence E[δ(Xt+1, Yt+1)] = δ(Xt, Yt), for all (Xt, Yt) ∈
U .

• Proof of Pr(δ(Xt+1, Yt+1) 6= δ(Xt, Yt)) ≥ 1/2. Let
us denote by q the number of disagreeing tokens (a
disagreeing token is a position i such that Xt(i−1) =
Xt(i) 6= Yt(i − 1) = Yt(i)) and by p the number
of zones of contiguous disagreeing positions. Let us
identify the three sources of possible evolution of the
set of disagreeing positions after a step:
1. Thanks to the coupling, each disagreeing token

Xt(i − 1) = Xt(i) 6= Yt(i − 1) = Yt(i) evolves in
a new agreeing position Xt+1(i) = Yt+1(i) with
probability 1.

2. Each first position in a disagreeing zone, say i,
such that Xt(i− 1) = Yt(i− 1) and Xt(i) 6= Yt(i)
can evolve in an agreeeing position with proba-
bility 1/2. We denote by r the number of such i
(0 ≤ r ≤ p).



3. Each first position in agreeing zone, say i, such
that Xt(i − 1) 6= Yt(i − 1) and Xt(i) = Yt(i) can
evolve in a disagreeeing position with probability
1/2. We denote by s the number of such i (0 ≤
r ≤ p).

Cases 2 and 3 are depicted on Figure 3.

1

2

X

Y

== 6= 6=

Agree Dis. Zone Agree

δ

1

2

1

2

1

2

Fig. 3. Evolution of a disagreeing zone

We have: δ(Xt+1, Yt+1) = δ(Xt, Yt)−q−r+s. Therefore
the event δ(Xt+1, Yt+1) = δ(Xt, Yt) corresponds to all
the cases where q + r = s. If q > p, such an event can
never occur (probability 0). Otherwise, its probability is
1
4p

∑p−q
r=0

(

p
r

)(

p
q+r

)

= 1
4p

∑p−q
r=0

(

p
r

)(

p
p−q−r

)

≤
1
4p

(

2p
p−q

)

≤ 1
22p

(

2p
p

)

(by Vandermonde’s convolution [13])

≤ 1
2 (by induction on p).

Hence Pr(δ(Xt+1, Yt+1) 6= δ(Xt, Yt)) ≥
1
2 .

�

Since δ(Xt, Yt) takes its values in {0, 1, · · · , N}, it
then follows from Theorem 3, Lemma 1 and Theorem 4:

Corollary 1. For N odd, Herman’s algorithm is self-
stabilizing w.r.t. the set L of configurations with a single
token. Furthermore:

1. The hitting time satisfies: HL ≤ 2N2.
2. The ε-absorption time satisfies:

ΘL(ε) ≤ 2eN2dln( 1
ε )e.

Note that the metric δ on Ω × Ω found here (Hamming
distance) is much simpler than the function ϕ on Ω used
by Herman, which involves the number of tokens of a
configuration x together with the minimal distance be-
tween two tokens of x. Our method gives also directly an
upper bound for the hitting time with no need for a sep-
arate analysis as done in Herman’s work [14]. Besides, it
gives a quadratic bound for the ε-absorption time (not
considered by Herman).

The method can be applied in the same manner to
several other self-stabilizing algorithms on cyclic graphs
(e.g., mutual exclusion Flatebo-Datta’s algorithm [11]
with central randomized scheduler, Mayer-Ostrovsky-Yung’s
binary clock algorithm with synchronous scheduler [22]).

6.3 Application to Iterated Prisoner’s Dilemma

Let us now consider Iterated Prisoner’s Dilemma algo-
rithm (Example 2). Recall that, in this case, the set L

made of the unique configuration x∗, with x∗(i) = + for
all 1 ≤ i ≤ N , is ergodic. Let us show that the algorithm
is self-stabilizing.

Theorem 5. For the Prisoner’s Dilemma algorithm, there
exist a subset U of Ω × Ω, a metric δ on Ω × Ω taking
value in {0, · · · , 11N} and satisfying condition (3), and
a coupling such that, for all (Xt, Yt) ∈ U :

E[δ(Xt+1, Yt+1)] ≤ (1 − 2
29N )δ(Xt, Yt).

Proof.

• Subset U . Let U = ∪1≤k≤5Uk where Uk (1 ≤ k ≤ 5)
is the set of pairs (X, Y ) such that X and Y coincide
everywhere except on k contiguous positions where
they differ. For any pair (X, Y ) ∈ Uk (1 ≤ k ≤ 5),
let δ(X, Y ) = ak where ak is a positive constant that
will be determined later. By convention: a0 = 0. The
exact way of extending δ from U to the entire space
Ω × Ω will be also explained later on.

• Coupling. The coupling (X, Y ) 7→ (X ′, Y ′) is such
that, at each step, the position chosen uniformly at
random coincides for X and Y . (So, at each step, the
state of the machine of the selected position, say j,
and the state of the j + 1-th machine are updated
simultaneously in X and Y .)

• Proof of E[δ(X ′, Y ′)] ≤ βδ(X, Y ) with β < 1. Let us
show that, for appropriate values of ak (1 ≤ k ≤ 5),
and appropriate definition of f(6), δ satisfies
E[δ(X ′, Y ′)] ≤ βδ(X, Y ) (with β < 1) for all (X, Y ) ∈
U . Consider a pair (X, Y ) ∈ U with k contiguous
disagreeing positions. Let i be the first disagreeing
position. The vector

(

X
Y

)

is of the form
(

γ1 · · · γi−2 γi−1 γi · · · γi+k−1 γi+k · · · γN

γ1 · · · γi−2 γi−1 ¬γi · · · ¬γi+k−1 γi+k · · · γN

)

with γ` ∈ {−, +} for all 1 ≤ ` ≤ N . Suppose that the
selected position j is such that 1 ≤ j ≤ i−2 or i+k ≤
j ≤ N . Then X(j) = Y (j) and X(j + 1) = Y (j + 1),
so X ′(j) = Y ′(j) and X ′(j + 1) = Y ′(j + 1), and the
disagreement zone is not modified. Suppose now that
the selected position j is equal to i − 1. Then, after
one step, we have:

(

X ′

Y ′

)

is of the form
(

γ1 · · · γi−2 γ′
i−1 γ′

i γi+1 · · · γi+k−1 γi+k · · · γN

γ1 · · · γi−2 ¬γ′
i−1 ¬γ′

i ¬γi+1 · · · ¬γi+k−1 γi+k · · · γN

)

where γ′
i−1 = γ′

i = + if γi−1 = γi, and γ′
i−1 = γ′

i = −
otherwise. This means that the disagreement zone
has progressed one position at the left. A symmetrical
case exists for j = i+k−1. We say that j is an “outer
rim position”. All the other possible cases for j are
studied below.



Consider (X, Y ) ∈ U . Let [i, i+k− 1] be the interval
of contiguous disagreeing positions between X and
Y (with 1 ≤ k ≤ 5). The random choice of the se-
lected machine j modifies the zone of disagreement
iff j corresponds to:
– Outer rim position: This means that j = i − 1 or

j = i + k − 1. There are two outer rim positions
for every 1 ≤ k ≤ 5. Choosing an outer rim posi-
tion extends the disagreement zone by one. This
happens with probability 2/N , and contributes
to modify E[δ] by: 2

N (a5 − a4) for k = 4, and
2
N (f(6) − a5) for k = 5. 3

– Inner rim position: This means that j = i or j =
i+k−2. There are no inner rim position if k = 1,
one inner rim position if k = 2, and two inner
rim positions if k = 3, 4, 5. Choosing an inner rim
position decreases the disagreement zone by two.
This happens with probability 1/N (resp. 2/N)
when k = 2 (resp. k = 3, 4, 5). It contributes to
modify E[δ] by 1

N (a0 − a2) = − 1
N a2 when k = 2,

and by 2
N (ak−2 − ak) when k = 3, 4, 5.

– Internal position: This means that j = i + 1 or
j = i + k − 3. There are no internal position if
k = 1, 2 or 3, one internal position if k = 4,
and two internal positions if k = 5. For k = 4,
choosing an internal position (j = i + 1) trans-
forms the disagreement zone into two separated
disagreement zones of length 1. This happens with
probability 1/N , and contributes to modify E[δ]
by: 1

N (2a1 − a4). For k = 5, choosing an internal
position (j = i+1 or j = i+2) transforms the dis-
agreement zone into two separated disagreement
zones of length 1 and 2. This happens with prob-
ability 2/N , and contributes to modify E[δ] by:
2
N (a1 + a2 − a5).

Accordingly, we have the following cases:
1. Case k=1. Then:

E[δ(X ′, Y ′)] − δ(X, Y ) = 2
N (a2 − a1).

Hence E[δ(X ′, Y ′)] = β1δ(X, Y )
with β1 = 1 − 2

N
a1−a2

a1

(using the fact that δ(X, Y ) is equal here to a1).
2. Case k=2. Then:

E[δ(X ′, Y ′)] − δ(X, Y )
= 1

N (2(a3 − a2) + (a0 − a2) = 1
N (2a3 − 3a2).

Hence E[δ(X ′, Y ′)] = β2δ(X, Y )
with β2 = 1 − 1

N
3a2−2a3

a2

(using the fact that δ(X, Y ) is equal here to a2).
3. Case k=3. Then:

E[δ(X ′, Y ′)] − δ(X, Y )
= 2

N ((a4 − a3) + (a1 − a3))

= 2
N (a4 − 2a3 + a1).

Hence E[δ(X ′, Y ′)] = β3δ(X, Y )
with β3 = 1 − 2

N
2a3−a4−a1

a3

(using the fact that δ(X, Y ) is equal here to a3).

3 This assumes that, for any pair of configurations X and
Y that coincide everywhere except on 6 contiguous positions,
δ(X, Y ) = f(6); this assumption will be checked a posteriori
when the formal definition of δ is given.

4. Case k=4. Then:
E[δ(X ′, Y ′)] − δ(X, Y )

= 1
N (2(a5 − a4) + 2(a2 − a4) + (2a1 − a4))

= 1
N (2a5 − 5a4 + 2a2 + 2a1).

Hence E[δ(X ′, Y ′)] = β4δ(X, Y )
with β4 = 1 − 1

N
5a4−2a5−2a2−2a1

a4

(using the fact that δ(X, Y ) is equal here to a4).
5. Case k=5. Then:

E[δ(X ′, Y ′)] − δ(X, Y )
= 2

N ((f(6) − a5) + (a3 − a5) + (a1 + a2 − a5))

= 2
N (−3a5 + f(6) + a3 + a2 + a1).

Hence E[δ(X ′, Y ′)] = β5δ(X, Y )

with β5 = 1 − 2
N

3a5−f(6)−a3−a2−a1

a5

(using the fact that δ(X, Y ) is equal here to a5).
We have now to find a1, · · · , a5 and a definition of f
such that, for all 1 ≤ k ≤ 5, βk satisfies 0 < βk <
1. For any p ≥ 1, let q and r be the quotient and
remainder of p divided by 5; then:
f(p) = qa5 + ar if r 6= 1,
f(p) = (q − 1)a5 + a4 + a2 if p 6= 1 ∧ r = 1.
f(p) = a1 if p = 1.
So we have: f(6) = a4 + a2.

4 The coefficient β5 of
the equation E[δ(X ′, Y ′)] = β5δ(X, Y ) becomes
β5 = 1 − 2

N
3a5−a4−a3−2a2−a1

a5

A possible solution for solving {βk < 1}1≤k≤5, is now:
a1 = 21, a2 = 20, a3 = 29, a4 = 36, a5 = 43.
It follows β ≤ 1 − 2

29N , hence 1
1−β ≤ 29

2 N .

• Function δ. Let us now define a function δ on the
whole space Ω×Ω. The rough idea is to define δ(X, Y )
as

∑n
p=1 f(|Wp|), where W1, ..., Wn are maximal zones

of contiguous positions where X and Y disagree. How-
ever, we have to correct this definition by taking into
account the special case of two (or more) consecu-
tive disagreement zones of length 1, separated only
by one position. therefore we have to distinguish be-
tween maximal disagreement zones of length ≥ 2,
and the other ones. Formally, a disagreement zone
of length p ≥ 2 is a maximal sequence of indices
i, i + 1, ..., i + p − 1 such that X and Y disagree on
i, i+1, ..., i+p−1. An alternating sequence of length
2p + 1 (with p ≥ 0) is a maximal sequence of indices
(i, i+1, ..., i+2p) such that X and Y disagree on i, i+
2, i+4, ..., i+2p, and agree on i+1, i+3, ..., i+2p−1.
Note that the length of an alternating sequence is an
odd number. Given X and Y , let A be the set of
alternating sequences, and B the set of disagreement
zones of length ≥ 2. We define, for all (X, Y ) ∈ Ω×Ω:
δ(X, Y ) =

∑

W∈B f(|W |) +
∑

V ∈A g(|V |),
where g is defined on odd numbers as follows:
g(2q + 1) = (q + 1)a2 if q odd,

4 In [12], we defined f in a simpler but erroneous manner
by: f(p) = qa5 + ar, including the case where r = 1. With
such a definition, f(6) = a5 + a1, and a possible solution for
solving {βk < 1}1≤k≤5, is: a1 = 21, a2 = 20, a3 = 29, a4 =
36, a5 = 48. The problem comes then from the fact: f(6) =
a5 + a1 > a4 + a2 = f(4) + f(2), which prevents δ to be a
metric by violation of the triangular inequality.



g(2q + 1) = qa2 + a1 if q even.
For example, for

(

0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 1 0 1 0

)

there is an alternating sequence of length 3 (from
position 2 to 4), a disagreement zone of length 3
(from position 6 to 8), and an alternating sequence
of length 1 (10-th position), which gives: δ = g(3) +
f(3) + g(1) = 2a2 + a3 + a1. Let us observe that,
for any pair of configurations X and Y that coin-
cide everywhere except on 6 contiguous positions,
δ(X, Y ) = f(6) = a4 + a2, as assumed before.

• Proof that δ satisfies (3). Let us show condition (3):
for all x, y ∈ Ω×Ω, there is a path x = z0, z1, · · · , zr =
y with (zj , zj+1) ∈ U (for all 1 ≤ j < r) and
∑r−1

j=0 δ(zj , zj+1) = δ(x, y), where, for all 0 ≤ j < r,
zj+1 is obtained from zj by complementing exactly
k contiguous states, for some 1 ≤ k ≤ 5. Given
x, y ∈ Ω, let W1, ..., Wn (resp. V1, ..., Vm) be the dis-
agreement zones of length ≥ 2 (resp. alternating se-
quences) between x and y. The first step of the pro-
cess consists in selecting a disagreement zone, say
W1, of z0 if such a zone exists (n ≥ 1), or an alter-
nating sequence, say V1, otherwise. Then z1 is pro-
duced by complementing the states of z0 correspond-
ing to the k leftmost positions of W1 (resp. V1) for
some 1 ≤ k ≤ 5. More precisely, in case where W1

is selected, z1 is constructed by complementing the
states of the 5 (resp. 4) leftmost positions of W1 when
|W1| ≥ 7 (resp. |W1| = 6), or complementing all the
states of W1 otherwise (i.e., when 2 ≤ |W1| ≤ 5). If V1

is selected, then z1 is constructed from z0 by comple-
menting the states of the two leftmost positions of V1

if |V1| ≥ 3, or complementing the state of the unique
position of V1 otherwise (|V1| = 1). It is easy to see
that, in all the cases, δ(z1, y) = δ(z0, y) − δ(z0, z1).
The process is then applied to z1, and so on itera-
tively until a step r for which δ(zr, y) = 0, i.e zr = y.

We have:
∑r−1

j=0 δ(zj , zj+1) = δ(x, y). Let us observe
that, given x and y, the choice of the disagreement
zone (resp. alternating sequence) at each step mod-
ifies only the order in which the states are comple-
mented from x to y, but does not affect the length r
of the constructed path .

• Proof that δ is a metric. One can now show that δ is
a metric, i.e.:
1. ∀x, y ∈ Ω : δ(x, y) = 0 iff x = y.
2. ∀x, y, z ∈ Ω : δ(x, y) ≤ δ(x, z) + δ(z, y).
The first item holds because all the coefficients ai are
positive. The proof of the second item is done by in-
duction on the length r of the path z = z0, z1, z2, ..., zr =
y satisfying (3) linking z to y (whose construction
has been explained above). Let us show the induc-
tion step: δ(x, z) + δ(z, y)
= δ(x, z) + (δ(z, z1) + δ(z1, y))
= (δ(x, z) + δ(z, z1)) + δ(z1, y)
≥ δ(x, z1) + δ(z1, y) (by base case)
≥ δ(x, y) (by induction hypothesis).
It remains to show the base case, i.e.: δ(x, z)+δ(z, z1) ≥

δ(x, z1), where z1 has been obtained from z by com-
plementing a zone, say D, of k contiguous states (for
some 1 ≤ k ≤ 5). Note that we have δ(z, z1) = ak.
Let `, ..., `+k−1 be the positions of D. Let W1, .., Wn

(resp. V1, ..., Vm) be the disagreement zones (resp. al-
ternating sequences) of z with x. The proof is a te-
dious but simple case analysis according to the vari-
ous possible positions of `, ..., ` + k − 1 with respect
to W1, ..., Wn, V1, ..., Vm.
The easy case is when D and the Wis, Vjs do not in-
teract together: no position of D coincides with or
is next to any position of Wi or Vj . In this case,
δ(x, z1) = δ(x, z) + δ(z, z1).
A more difficult case is when D is next to the right
of a disagreement zone (of length ≥ 2), say W1: the
rightmost position of W1 is `− 1 (but no other posi-
tion of D coincides with or is next to any position of
Wi or Vj). Then, the disagreement zones and alter-
nating sequences of z1 w.r.t. x are the same as those
of z, except that W1 is replaced by the concatena-
tion W1D of W1 and D. The inequality δ(x, z1) ≤
δ(x, z)+δ(z, z1) then reduces to f(|W1D|) = f(|W1|+
k) ≤ f(|W1|) + ak. The latter inequality holds be-
cause, for all s ≥ 2 and all 1 ≤ k ≤ 5, we have:
f(s + k) ≤ f(s) + ak.
Another typical case is when D overlaps with W1:
the rightmost position of W1 is ` + b − 1 with b ≥ 1
(but no other position of D coincides with or is next
to any position of Wi or Vj). There are b positions
in common to W1 and D, s positions proper to W1

on the left, and t positions proper to D on the right.
We have: |W1| = s + b and |D| = b + t, where s, b
and t are numbers (with b + t ≤ 5). Let us assume
that s and t are positive. The inequality δ(x, z1) ≤
δ(x, z) + δ(z, z1) then reduces to f(s) + f(t) ≤ f(s +
b) + f(t + b) in the case where s, t or b ≥ 2, and
to g(3) ≤ f(2) + f(2) in case s = t = b = 1. Both
inequalities are easily checked (the second inequality
is simply 2a2 ≤ 2a2).
The analysis of all the other cases where D interacts
with one (or more) disagreement zone or alternating
sequence of z is similar.

Finally, let us note that the maximal value B of δ on Ω×
Ω is at most a1d

N
2 e ≤ 11N . As a recapitulation, there

exists a metric δ such that E[δ(X ′, Y ′)] ≤ βδ(X, Y ), for
β ≤ 1 − 2

29N . Furthermore, for these values of ak, the
maximal value B of δ on Ω × Ω is such that B ≤ 11N .

�

Therefore, from Theorem 2, Lemma 1 and Theorem 5,
it follows:

Corollary 2. Iterated Prisoner’s Dilemma algorithm is
self-stabilizing w.r.t. the set L = {(+)N}. Futhermore:

1. The hitting time satisfies: HL ≤ 319
2 N2 .

2. The ε-absorption time satisfies:
ΘL(ε) ≤ 29

2 N ln( 11N
ε ).

Thus the quasi-linear bound on the ε-time of ab-
sorption is obtained, as found in [9]. We retrieve also
the quadratic bound on the hitting time found empir-



ically in [18]. The proof presented here bears some re-
semblance with the proof by Dyer et al. in [9]: A func-
tion δ has been found here on Ω × Ω which satisfies
Eδ(X ′, Y ′) ≤ βδ(X, Y ) (with β < 1), while they found
a function ϕ on Ω satisfying Eϕ(X ′) ≤ β′ϕ(X) (with
β′ < 1) and ϕ(L) = 0. Note that their function ϕ is sim-
pler than δ (ϕ mainly involves isolated singletons (−)
and doublets (−−)). However, we obtain here a better
ε-absorption time (linear factor β = 18 < β′ = 49/2).

7 Extension

Up to now, we have focused on methods which apply
when A has a unique ergodic set. We now give an exten-
sion of Theorem 3 which may apply when A has more
than one ergodic set. (Theorem 2 extends similarly.)

Theorem 6. Given a Markov chain A and two disjoint
closed sets L0 and L1 (L = L0]L1), suppose there exists
a coupling (Xt, Yt) and a function δ on Ω×Ω which takes
values in {0, 1, · · · , B} such that:

• δ(Xt, Yt) = 0 iff Xt = Yt,
• δ(Xt, Yt) = B ⇒ δ(Xt+1, Yt+1) = B,
• (δ(Xt, Yt) = B ∧ Yt ∈ L0) ⇒ Xt ∈ L1,
• there exists α > 0 such that, for all (Xt, Yt) with

0 < δ(Xt, Yt) < B:
E[δ(Xt+1, Yt+1)] ≤ δ(Xt, Yt)

∧ Pr(δ(Xt+1, Yt+1) 6= δ(Xt, Yt)) ≥ α.

Then A is self-stabilizing w.r.t. L. Futhermore:
1. The expected hitting time satisfies: HL ≤ B2/α.
2. The ε-absorption time satisfies:

ΘL(ε) ≤ deB2

α edln( 1
ε )e.

The proof of Theorem 6 is analogous to that of Theo-
rem 3, but relies on the following proposition :

Proposition 6. Suppose that D = (Dt)
∞
t=0 is a nonneg-

ative stochastic process on {0, 1, · · · , B} such that
E[Dt+1] ≤ Dt. Furthermore suppose that Pr(Dt+1 6=
Dt) ≥ α (with α > 0) when 0 < Dt < B. Then if τ is the
first time that Dt = 0∨Dt = B, we have: E[τ ] ≤ B2/α.

Proof. Let D′
t be defined by: D′

t =

{

Dt if Dt 6= B,
0 if Dt = B.

Let τ ′ be the first time at which D′
t reaches 0. We have

τ ′ = τ because D′
t = 0 iff Dt = 0 ∨ Dt = B. On the

other hand, it is easy to see that D′
t satisfies conditions

of Prop. 5. Hence, we have E[τ ] = E[τ ′] ≤ B2/α. �

Proof of Theorem 6. Let us consider an integer-valued
function δ satisfying the assumptions of Theorem 6, and
let us show statements 1 and 2. (The fact that A is self-
stabilizing follows from statement 1, according to Propo-
sition 2.)

1. Consider two elements x, y of Ω and a coupling (Xt, Yt)
of initial element (X0, Y0) = (x, y) such that y ∈ L0.
Let Dt = δ(Xt, Yt) for t ≥ 0. Since Dt = 0 iff Xt = Yt

and (Dt = B ∧ Yt ∈ L0) ⇒ Xt ∈ L1, the expected
time E[τ ] required for Dt to reach 0 or B, is an up-
per bound of the hitting time HL. Since, by Propo-
sition 6, we have: for all x, y ∈ Ω, E[τ ] ≤ B2/α, we
have: HL ≤ B2/α.

2. Let Dt = δ(Xt, Yt). It is easy to check that Dt sat-
isfies the conditions of Prop. 6. Let T ′

x,y be the first
time where Dt = 0 ∨ Dt = B, starting with D0 =
δ(x, y) (i.e., X0 = x, Y0 = y). It follows by Prop. 6:
E[T ′

x,y] ≤ B2/α. Let T = deB2/αe, then by Markov’s
inequality, we have the probability that T ′

x,y > T is

at most e−1. If we run s independent trials of length
T then the probability that Dt 6= 0 ∧ Dt 6= B for
t ≥ sT is at most e−s. Therefore, for t > T dln(ε−1)e,
the probability that Dt = 0∨Dt = B is at least 1−ε.
Suppose that Y0 ∈ L0. Then Yt ∈ L0 (because L0 is
closed). Hence Dt = 0 implies Xt ∈ L0, while Dt = B
implies Xt ∈ L1 (since δ satisfies the assumptions of
Theorem 6). So Xt ∈ L as soon as Dt = 0∨Dt = B.
Therefore, for all X0 ∈ Ω and all t ≥ T dln(ε−1)e:
Pr(Xt ∈ L) ≥ 1 − ε. �

As in Section 6, it suffices, thanks to Lemma 1, to check
the condition E[δ(Xt+1, Yt+1)] ≤ δ(Xt, Yt) of Theorem 6
on adjacent pairs (Xt, Yt) only.

Example 5. Consider an undirected regular graph G =
(V, E), with N vertices and degree ∆, and a palette of
colors C = {0, · · · , q − 1}. We suppose furthermore in
this example that q = 2. A 0-coloring (resp. 1-coloring)
is a function from V to {0} (resp. {1}). Let L0 (resp. L1)
be the 0-coloring (resp. 1-coloring) of G. Starting from
any coloring of G, consider the following algorithm A
(with a randomized central scheduler):

- Pick a vertex v ∈ V and a neighbor w of v uniformly
at random;

- recolor v with the color of w.
Let δ(Xt, Yt) be the number of vertices at which Xt, Yt

differ, It is easy to show that, for (adjacent) colorings
(Xt, Yt):

E[δ(Xt+1, Yt+1)] = δ(Xt, Yt). (5)
Furthermore, for any pair of colorings (Xt, Yt) such that
0 < δ(Xt, Yt) < N :

Pr(δ(Xt+1, Yt+1) 6= δ(Xt, Yt)) ≥
1

∆N (6)
One infers from (5) and (6), using Theorem 6, that,
starting from an arbitrary configuration of Ω, A is self-
stabilizing w.r.t. L0 ] L1, and that the hitting time is
cubic: HL ≤ ∆N3.

Theorem 6 can be used to treat the case where L is
made of more than two ergodic sets, by using the idea of
aggregating configurations together or “lumping” (see,
e.g., [8]). For example, suppose that in Example 5, there
are q > 2 colors. In this case L is composed of q ergodic
sets, which correspond to the monochromatic colorings.
One can reason as in Example 5, but with with L0 and
L′

1 (instead of L0 and L1), where L′
1 is the set of all

the colorings without color 0. Applying Theorem 6, one
thus infers that the hitting time is cubic: Starting from
an arbitrary coloring, the process reaches L0 or L′

1, in
at most ∆N3 steps in average. So, any coloring losts
at least one color after at most ∆N3 steps in average.
The hitting time for reaching a monochromatic color is
therefore at most (q − 1)∆N3.



8 Conclusion

We have shown that the method of coupling, which is
classically used to evaluate the rate of convergence to
equilibrium of Monte Carlo Markov chains, can be used
to prove self-stabilization of distributed algorithms in an
original manner. It allows us also to analyze the rate of
convergence of these algorithms according to two differ-
ent measures. The method has been enhanced by us-
ing the refinement of coupling, called “path coupling”.
This suggests to explore applications of the method using
other refinements of coupling, such as Huber’s bounding
chain method [15]. The basic method requires the set L
of legal configurations to be strongly connected, but we
indicated how to relax this assumption. We also believe
that the method can be extended to the case where the
scheduler is not fixed but arbitrary (and possibly “ma-
licious”), such as in the case of Israeli-Jalfon’s mutual
exclusion [16] or randomized consensus protocols (e.g.,
[2]), using, for example, the technique of scheduler-luck
games (see [6]).
Finally, let us indicate that the idea of coupling has been
independently used in [7] for analyzing the convergence
time of various protocols where processors communicate
by messages.
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